BRIEF COMMUNICATION

Nd₄Cu₂O₇: A Copper(I) Oxide with a Novel Cooperatively Distorted T' Type Structure

D. R. Pederzolli and J. P. Attfield

Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom; and Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

Received July 14, 1997; in revised form October 14, 1997; accepted October 16, 1997

The crystal structure of Nd₄Cu₂O₇ (monoclinic, space group A2/m, a = 8.4493(2) Å, b = 3.7591(1) Å, c = 12.6006(5) Å, $\beta = 109.576(4)^{\circ}$, Z = 2), prepared by topotactic reduction of the high- T_c superconductor parent phase Nd₂CuO₄, has been determined by Rietveld fitting of time-of-flight neutron powder diffraction data ($R_{wp} = 1.90\%$). A novel oxygen-vacancy-ordered arrangement of cooperatively distorted Cu₂O₃ planes containing 2- and 4-coordinate Cu⁺ sites is found. © 1998 Academic Press

 Ln_2CuO_4 compounds (Ln = lanthanide) adopt two different structure types: the K₂NiF₄ (T) structure containing octahedrally coordinated Cu²⁺, as found for La₂CuO₄, and the Nd₂CuO₄ (T') structure containing Cu²⁺ in a squareplanar site. Hole-doped superconductivity can be induced by oxidizing La₂CuO₄ through divalent cation substitution to yield the solid solution phases $La_{2-x}M_xCuO_4$ (M = Ca, Sr, Ba) or by insertion of excess oxygen to give $La_2CuO_{4+\delta}$ (1-3). By contrast, Nd₂CuO₄ can be reduced through Ce⁴⁺ substitution to yield the electron-doped superconductor $Nd_{2-x}Ce_{x}CuO_{4}$ (4, 5); however, attempts to prepare partially reduced $Nd_2CuO_{4-\delta}$ phases have resulted in the formation of an apparent Cu^+ oxide, $Nd_2CuO_{3.5}$ (6), for which a disordered Sr₂CuO₃ type structure (a vacancyordered T type structure) was determined using integrated powder X-ray intensities (7). We have optimized the synthesis of large (4g), phase-pure, polycrystalline samples of Nd₂CuO_{3.5} by low-temperature hydrogen reduction, giving sufficient material for structure determination from time-offlight neutron powder diffraction. This shows the product to be a stoichiometric phase $Nd_4Cu_2O_7$ with a novel oxygendefect-ordered T' structure containing cooperatively distorted Cu^I₂O₃ layers.

Polycrystalline Nd_2CuO_4 was prepared by solid-state reaction of Nd_2O_3 and CuO at 1025°C. Four grams of this

powder was spread evenly in an alumina boat and heated at 335°C for 11 h in a tube furnace under a flowing 0.05:0.95 H_2-N_2 mixture to give the reduced phase $Nd_4Cu_2O_7$, which was identified by powder X-ray diffraction (7). Longer reaction times or higher temperatures resulted in decomposition to Nd₂O₃ and Cu, whereas shorter times or lower temperatures gave a mixture of Nd₂CuO₄ and $Nd_4Cu_2O_7$, and no intermediate Nd_2CuO_{4-x} phases were observed. The oxygen content of Nd₄Cu₂O₇ was confirmed by thermogravimetric analyses. Heating under 0.05:0.95 H_2-N_2 gave the products Nd_2O_3 and Cu, and the mass loss of 1.9(1)% corresponds to the composition Nd₂CuO_{3.47(2)}. Heating Nd₄Cu₂O₇ in O₂ re-formed the parent compound Nd₂CuO₄, and the mass increase of 2.0(1)% gives the formula $Nd_2CuO_{3.49(2)}$, assuming the product to be oxygen stoichiometric. Time-of-flight neutron powder diffraction data were collected at 4K on the POLARIS instrument at the ISIS pulsed neutron source, Rutherford Appleton Laboratory, U.K. Rietveld refinement (8) of the structure was performed using the GSAS package (9).

The powder X-ray diffraction pattern of Nd₄Cu₂O₇ was indexed on a body-centered orthorhombic cell with parameters $a_0 = 4.2427(2)$ Å, $b_0 = 3.7725(2)$ Å, and $c_0 = 11.9262(6)$ Å, similar to that of Sr₂CuO₃, and three additional weak reflections could be indexed on the $2a_0 \times b_0 \times 2c_0$ supercell observed previously by selectedarea electron diffraction (10). Many intense superstructure peaks in the neutron diffraction pattern could also be indexed using this supercell (Fig. 1). The previously reported Sr₂CuO₃ type model (7) yielded poor Rietveld fits to the neutron data and so a series of models based on the T' structure with oxygen defects in the CuO₂ planes and oxygen occupancy of possible sites in the Nd layers were tested. The only one to give a good fit to the neutron data is that shown in Fig. 1 and Table 1 and no significant occupancy of any other oxygen site was found. The structure has an Acentered monoclinic cell (space group A2/m) with lattice

FIG. 1. Observed, calculated, and difference time-of-flight neutron powder diffraction profiles for $Nd_4Cu_2O_7$ based on data collected on (a) the backscattering and (b) the low-angle detectors of POLARIS. Long and short markers indicate Bragg reflections for an orthorhombic Sr_2CuO_3 type cell and the additional supercell reflections, respectively.

vectors $\mathbf{a} = 2\mathbf{a}_0$, $\mathbf{b} = \mathbf{b}_0$, and $\mathbf{c} = \mathbf{c}_0 - \mathbf{a}_0$. This model was refined simultaneously using data from both the low-angle $(2\theta = 35^\circ)$ and backscattering $(2\theta = 145^\circ)$ POLARIS detectors covering *d*-space ranges of 0.9–4.4 and 0.5–3.1 Å, respectively (Fig. 1).

The structure of $Nd_4Cu_2O_7$ is derived from that of Nd_2CuO_4 by ordered removal of one-quarter of the oxygens in the CuO_2 layers, as shown in Fig. 2. This gives rise to seven-coordinate Nd sites and alternating four- and two-coordinate Cu sites along the *a* axis. The Cu(1) coordination

is a very distorted square plane with distances of 2×1.88 Å to O(1) and 2×2.40 Å to O(2), in contrast to the regular coordination (4×1.97 Å) of Cu²⁺ in the parent compound Nd₂CuO₄ (11). Cu(2) has a linear twofold coordination with Cu(2)–O(2) bond distances of 1.831(1) Å. Hence, the Cu₂O₃ planes are cooperatively distorted to give each Cu site a linear coordination geometry with two short Cu–O bonds characteristic of Cu⁺. This distortion results in a puckering of the planes, giving a Cu(1)–O(2)–Cu(2) bond angle of 173° . Bond valence calculations (Table 1) using the method of

BRIEF COMMUNICATION

TABLE 1

Refinement Results^a for Nd₄Cu₂O₇ in Space Group A2/m at 4K and Calculated Bond Distances with Esd's in Parentheses

		Profile data			
$2\theta = 145^{\circ}$	No. of reflections $= 2203$	No. of points $= 3715$	$R_{wp} = 1.82\%$	$R_{\rm p} = 2.21\%$	$R_{\rm F}=1.40\%$
$2\theta = 35^{\circ}$	No. of reflections $= 404$	No. of points $= 3116$	$R_{wp} = 2.22\%$	$R_{\rm p} = 1.82\%$	$R_{\rm F}=1.60\%$
Total	No. of parameters $= 52$	$\chi^2 = 1.90$	$R_{\rm wp}=1.90\%$	$R_{\rm p} = 2.06\%$	$R_{\rm F}=1.60\%$

Cell parameters a = 8.4493(2) Å b = 3.7591(1) Å c = 12.6006(5) Å $\beta = 109.576(4)^{\circ}$

Atomic parameters^b Symmetry **BVS**^c Atom position х Zy 0.1668(2) 0 0.3586(1) 2.92 Nd(1) 4iNd(2) 4i0.3180(2) 0.5 0.1589(1) 2.82 Cu(1)2a0 0 0 1.02 0 0 2d0.5 0.94 Cu(2)O(1) 2b0 0.5 0 1.66 4i0.2887(2)0.0098(2)O(2)0 1.57 O(3) 4i0.1214(4)0 0.7492(1) 2.31 0 O(4) 4i0.3845(4) 0.2755(1) 2.01 Interatomic distances (Å) $Nd(1)-O(1) \times 1$ 2.616(2) $Nd(2)-O(1) \times 1$ 2.761(1) $Nd(1)-O(2) \times 2$ $Nd(2)-O(2) \times 2$ 2.610(2) 2.629(2) $Nd(1)-O(3) \times 1$ 2.357(3) $Nd(2)-O(3) \times 1$ 2.307(4) $Nd(1)-O(3') \times 2$ 2.286(1) $Nd(2)-O(4) \times 2$ 2.336(1) $Nd(1)-O(4) \times 1$ 2.402(3) $Nd(2)-O(4') \times 1$ 2.368(3) $Cu(1)-O(1) \times 2$ 1.8796(1) $Cu(2)-O(2) \times 2$ 1.831(1) $Cu(1)-O(2) \times 2$ 2.400(1)

^{*a*}Further details are available from the authors.

^bConstrained isotropic thermal U factors were 0.0004(1)Å² for the metal atoms and 0.0026(2)Å² for the oxygen atoms.

^cBond valence sums were calculated using the method and parameters in ref 12.

FIG. 2. Crystal structure of $Nd_4Cu_2O_7$, in which black, dark gray, and light gray spheres represent Cu, O, and Nd atoms, respectively, and the two short Cu–O bonds around each Cu⁺ are emphasized.

Brown and Altermatt (12) confirm the presence of Cu^+ and Nd^{3+} . It is notable that bond valence sums for the O(1) and O(2) sites within the Cu_2O_3 planes are significantly less than the expected value of 2. Such deviations reflect internal stresses in the coordination polyhedron of an atom due to geometric constraints imposed by the rest of the structure (13) and evidence a stress within the Cu_2O_3 planes. By contrast, the O(3) and O(4) sites in the fluorite type Nd_2O_2 layers appear to be unstressed with mean Nd-O-Nd bond angles of 109.5° and 109.1°, respectively, very close to the ideal tetrahedral value.

Previous high-temperature studies of the Nd₂O₃-Cu₂O system have found only the Delafossite type phase NdCuO₂ (14), whereas Nd₄Cu₂O₇ is formed by the topotactic reduction of Nd₂CuO₄ at low temperatures and decomposes to NdCuO₂ and Nd₂O₃ above 650°C. Nd₄Cu₂O₇ is the only reported example of a Cu(I) oxide obtained by topotactic reduction of a high- T_c superconductor type structure. This unique reaction results from the expansive stress within the CuO₂ planes in Nd₂CuO₄, which also makes it the only

simple copper oxide structure that can be electron-doped by Ce^{4+} substitution to give a superconducting phase.

ACKNOWLEDGMENTS

We thank EPSRC for a studentship for D.R.P. and the provision of neutron beam time, and Dr. R. Smith for assistance with data collection.

REFERENCES

- Y. Oda, M. Yamada, H. Ochiai, K. Asayama, T. Kohara, Y. Yamada, K. Koga, S. Kashiwai, and M. Motoyama, *Solid State Commun.* 73, 725 (1990).
- N. Lagueyte, A. Wattiaux, J. C. Park, J. C. Grenier, L. Fournes, and M. Pouchard, J. Phys. III 1, 1755 (1991).
- 3. E. Takayama-Muromachi and A. Navrotsky, Physica C 218, 164 (1993).

- 4. Y. Tokura, H. Tagaki, and S. Uchida, Nature 337, 345 (1989).
- 5. H. Tagaki, S. Uchida, and Y. Tokura, *Phys. Rev. Lett.* 62, 1197 (1989).
- F. C. Chou, J. H. Cho, L. L. Miller, and D. C. Johnston, *Phys. Rev.* B 42, 6172 (1990).
- J. Choisnet, P. Mouron, M. Crespin, P. A. van Aken, and W. F. Müller, J. Mater. Chem. 4, 895 (1994).
- 8. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
- 9. A. C. Larsen and R. B. Von Dreele, Report LA-UR-86-748, Los Alamos National Laboratory, 1987.
- 10. P. A. van Aken, W. F. Müller, and J. Choisnet, *Physica C* **211**, 421 (1993).
- J. Gopalakrishnan, M. A. Subramanian, C. C. Torardi, J. P. Attfield, and A.W. Sleight, *Mater. Res. Bull.* 24, 321 (1989).
- 12. I. D. Brown and D. Altermatt, Acta Crystallogr. Sect. B 41, 244 (1985).
- 13. I. D. Brown, J. Solid State Chem. 82, 122 (1989).
- 14. H. Haas and E. Kordes, Z. Kristallogr. 129, 50 (1969).